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Technical Analysis and Nonlinear Dynamics 
                    

   
Abstract 

 
In this paper we develop one simple nonlinear model of time series generation that 
can reproduce some technical behaviours like Elliot Waves and lateral trends. Our 
model can forecast some technical movements as a consequence of “motion driver” 
at some time moments. Changing the “amplitude” of emotion stated in the “motion 
driver” parameter can alter technical figures. Our model is important because, to 
our knowledge, is the first model that can explain why there are Elliot Waves with 
Fibonacci ratios precisely. However, future research and development is needed 
since our model is only the first step. 

 
 

Introdution 
 
 

                                                

This days technical analysis is gaining substantial importance in the work of financial 
analysts and professionals, even theoretical explanation of the technical analysis 
techniques remains to be done. It is usually recognized that technical analysis is more 
one art than one science, regarding the efficient market theory statement that excludes 
technical analysis from having prediction value. However, theoretical explanation is 
needed always to validate some tools used since, as technical analysis state, some kinds 
of behaviour like Elliot movements are indeed observed in financial markets. 
 
The principal goal of our work is indeed explaining why Elliot waves work in practice 
and why fibonacci numbers 0,618 and 1,618 may work for expansion and retracement 
movements.  
 
Our past work with nonlinear and chaotic movements research leaves us with some 
tools to try to explain Elliot waves. For doing so, in this paper we explain very quicky 
chaotic theory and fractal properties of nonlinear logistic equation reproducing 
feigenbaums work. Our present work shows theoretically and mathematically how 
logistic equation can generate wave movements in precisely fibonnacci statemnents.  
 
In first part we describe the basics of technical analysis and in part two we devellope 
chaotic nonlinear theory with the help of logistic equation work of feigenbaum. In part 
three we link the two kind of analysis showing that some technical movements are 
simplest consequence of nonlinear dynamics, namely Elliot waves with fibonacci 
expansions and retracements. 
    
For completing our theoretical link between chaotic nonlinear theory and fractal 
movements and technical analysis, we give some practical examples in part IV. 

 
 

 
  



 
Finally we made some conclusions. 
 
 
 
1.Technical Analysis, Market analysis and Statistical Evidence. 
 
 
1.1.Technical Analysis concept – Information discount and Dow Theory. 

 
 

1.1.1. Introdution. 
 
Since long time ago, predicting stock market movements has been one goal of market 
participants, some of them, looking for the holly grail. It is not surprising, understanding 
this whisper, that  a lot of people find interesting to apply several disciplines and  trying 
to make believe investors that the method applied is infallible in predicting stock market  
movements, so that investors who follow this will be rich. 
 
As we know, many of these people win money selling books instead of making money 
with the techniques they refer as profitable.  
 
As a matter of fact, after so many time there are 3 schools that remain active and have 
followers in the stock market. This schools are: 
 

- Technical Analysis. 
- Fundamental Analysis. 
- Quantitative Analysis. 

 
The older schools are technical analysis and fundamental analysis. Even today they are 
be more followed by stock market analysts and investors. 
 
The two schools base their analysis in the concept that information is not fully reflected 
in the stock prices. The concept that the market is efficient, latter designed by 
Fama(1970) , said that all information is reflected in stock prices and new information is 
immediately reflected in the price. 
 
Technical and Fundamental analysis did not agree with this idea and they try to 
understand how information released could affect future price movements of stock 
prices. 
 
Fundamental analysis is concerned with the value of the stock. This value is analysed 
comparing the cash flow statements in the past with perspectives in the future. The 
value of one company is determined by the discounted cash-flow that the company will 
generate in the future. Knowing this value, the fundamental investor only compares it 
with stock price and, if the price is below value the decision is buy and hold the stock. 
The fundamental investor believes that somewhere in the future the price will flutuate 
under and below fundamental value trend. So, somewhere in the future the investor that 
buys the stock bellow value will have opportunity to sell the stock with profit. 
 



Technical analysis is a technique that tries to extrapolate trends and stock market 
behaviours from past performances of prices and volumes. For the technical analyst 
stock market can be forecasted and that is why he studies the graphics of stock market 
prices and volumes. For him, what accounts is only price/volume since value is always 
a subjective think that market players try to establish everyday. Technical analyst 
believes that information that comes to market is not immediately reflected in stock 
prices since not everybody know it.      
 
For the technical analyst market discounts everything and everything is reflected in the 
forces of demand and supply. As any economist knows, in the market there is a fight 
between demand and supply and the result is quantity and price at one equilibrium level. 
 
So, for the technical analyst, the two vectors that matters are price and volume of 
negotiation. If there is some strong volume force, and price tends to decline this means 
that supply is increasing slowly (not immediately since information is not immediately 
reflected in price) and the price will go down in the future in one movement that 
technical analysts call  distribution movement.  
 
If there is some strong volume force and price tends to go up this means that demand is 
increasing slowly (not immediately since information is not immediately reflected in 
price) and the price will go up in the future in one movement that technical analysts call  
accumulation movement. 
 
Quantitative analysts, by their side,believe that the stock market is efficient, that is, the 
information released is immediately reflected in stock prices. So, trying to forecast or 
find stocks below value is a useless pratic as is looking for graphs or historical stock 
prices and volumes. The better way of acting in stock market is diversify and reduce 
intrinsic risk from stocks, concentrating in market risk. The portfolio that investor build 
must be aggressive or defensive against market behaviour, and this depends on risk and 
market expectations of the investor. For the quantitative analysts all that accounts is the 
risk of the portfolio against the market and eventually other factors that account for 
systematic risk (Ross (1976), Fama and French (1993)).   
 
Next we will see with more detail the concept of technical analysis that Dow left us. 
 
 
1.1.2. Dow Theory. 
 
 
1.1.2.1. Dow Theory History. 
 
The Dow Theory evolved from the work of Charles H. Dow, from a serie of articles 
published in the Wall Street Journal Editorials between 1900 and 1902. Dow used the 
behaviour of the stock market as a barometer of business conditions. His successor, 
William Peter Hamilton developed Dow´s principles and organized them in the Dow 
Theory. As a matter of fact it was a cortesy call Dow Theory since it is more Hamilton 
theory. 
 



These principles were latter published in 1922 in his book “The Stock Market 
Barometer”. This work has been accomplished with the contribute of Robert Rhea that 
published Dow Theory in 1932. 
 
The teory assumes that the majority of the stocks follow market trends most of the time 
and that market trends exist and can be measured. In order to measure the market, Dow 
constructed two indexes: 
 
- The Dow Jones Industrial Average that includes 12 companies (now has 30). 
- The Dow Jones Rail Average that includes 12 railroad stocks. 
 
Since the Rail Average was intended for measuring transportation stocks, the historical 
evolution of aviation and others forms of transportation has as consequence the 
modification of the Rail Average. Consequently, this index has been renamed as 
Transportation Average. 
 
 
1.1.2.2. Dow Theory Interpretation. 
 
As a first task we have to record daily closing prices of the two averages and the total os 
transactions in the New York Stock Exchange. The six basic assumptions of the theory 
are as follows: 
 
Averages Discount Everything 
 
Changes in the daily closing prices reflect  the aggregate judgement and emotions of all 
the stock market participants. It is therefore logic to assume that the stock market 
discounts everything known that can affect demand and supply of stocks. 
 
The Market has Three Movements   
 
There are simultaneously three movements in the stock market. 
 
Primary Movement. The most important movement of stock markets is the primary or 
major trend, that is known as a bull (rising) or bear (falling) market. Such movements 
last for one to several years, 
 
A primary bear market is a long decline interrupted by some rallies (secondary 
reactions). It begins as there is some disappointment about stock behaviour in the 
market. The second phase reaches as the levels of business activity and profits decline. 
The third phase is related to liquidation of stocks regardless their value and represents 
the possible bottom of the bear market. 
 
A primary bull market is a long upward movement perturbed by some rallies (secondary 
reactions). The bull begins when the averages have discounted the worst possible news 
and confidence about the future begins to revive. The second phase begins when profits 
outperform expectations and business conditions improve. The third and final phase of 
the bull markets arrives when expectations are too high and the made projections are 
unfounded.  
 



Secondary Reactions. A secondary or intermediate reaction is defined as a important 
decline in a bull market or a advance in a bear market. This movements usually last 
from 3 weeks to some months. The movement generally retraces, as Pring (1991,pp.34) 
refers, from 33 to 66 percent and sometimes it retraces 50 percent. As we will see later, 
the retracement percentage is a normal implication of nonlinear dynamic systems. 
 
Minor Movements. The minor movements lasts from a matter of hours up to as long as 
3 weeks. It is important because it forms part of the primary or secondary moves, so it 
has no forecasting power for long-term investors. This is important since short-term 
movements can be manipulated to some degree, unlike the secondary or primary trends. 
 
Lines Indicate Movement   
 
Rhea (1932) defined a line as “ a price movement two to three weeks or longer, during 
which period the price variation of both averages moves within a range of  
approximately 5 percent (of their mean average). Such a movement indicates either 
accumulation (bullish movement) or distribution (bearish movement). 
An advance above the limits of the “line” indicates accumulation and predicts higher 
prices, and vice versa. 
 
Price/Volume Relationships Provide Background   
 
The normal relationship is for volume to expand on rallies and contract on declines. If 
volume becomes dull on a price advance and expands on a decline, a warning is giving 
that the prevailing trend may soon be reversed. This principle should be used as a 
background information, since reversals must be confirmed only by the price of the 
respective averages. 
 
Price Action Determines the Trend   
 
Bullish indications are given  when successive rallies penetrate peaks. If price 
movement takes the averages below last correction in a bull market, we may believe 
market trend is in a way of being changed. Technical analysts prefer to use more 
indicators to confirm. 
 
The peaks are known as  resistance levels since they are relative maximums that past 
market behaviour was inable to defeat. So they act as critical levels for evaluating 
market behaviour in the future. If price rise and beats previous peaks we are in the 
presence of a strong bull market. 
 
In a bull market there are some corrections that lead to minimum levels known as  
bottoms or support levels, since they are the levels of prices that in the past the market 
movement support the down movement.  
 
The Averages Must Confirm  
 
It is always assumed that a trend exist until a reversal is proved. It is normal that when 
we assist to one economic rebound, side by side with economic output expansion that 
must be transportation activity increase of these products. Of course these, in 1900´s the 
transportation need was more important than today, since the economy in 2000´s is 



more concentrated on services and transportation, even is needed it is not in the same 
intensity as before. 
 
So, it is perfectly natural that today technical analysts did not had these necessity of the 
confirmation of averages.    
 
 
1.2.Rational Investor and Psycologic Behavior. 
 
The work of Von Neuman and Morgenstern (1953) give to the economists the tool of 
rational investor, that is, one investor that is perfectly rational in all conditions and 
collective. Rational investors always look for risk when he can have better returns. 
Risk/return relationship is the building stone of modern portfolio theory and some of the 
builders, like Markowitz(1952), Sharpe(1964), Lintner(1965) and Mossin(1966) have 
win some nobel premiums in the 90´s. 
 
However, some psychologists like Tversky and Kahneman(1979) have shown that 
human behaviour may be very far from rational situations and emotion can take place in 
the mind of investors when they are placed in some collective circunstances. 
 
Fads, bubbles and even technical analysis techniques start to be tested hard in the latter 
90´s, after the work of Scheinkman and Lebaron(1989). In that study, they have shown 
that some technical analysis techniques, like moving averages of 50 and 200 days can 
give signals with returns higher than that of risk /return relationships would predict. 
 
Fads, bubbles and stock crashes had been in the open eyes of investors and academics, 
where some look for rational explanations, desmistifying irrational behaviour,and others 
trying to shown that these kind of behaviours is the result of non rational behaviour. 
 
Shiller(1989), for example, has documented excess volatility in stock prices regarding 
the forecastable volatility in stock dividends in the American stock market. Exuberance 
irrationality is perhaps one important way for explaining stock market behaviours and is 
fads, bubbles and stock market crashes that happen sometimes. 
 
Resistance and support levels explained below are examples of  psychological 
behaviour that can emerge in one collective group interation. 
 
Barberis e al.. (1998) propose a model of investor sentiment where we see prospect 
theory with irrational behavioural. 
 
 
1.3.Price Patterns , Resistance, Support Levels and Psychological View. 
 
Technical analysts give a lot of importance to resitant and support levels. To one 
technical analyst market discounts everything and every day is one fight between buyers 
and sellers. One appreciation in price must be one consequence of volume since 
pressure on demand is present. If that is not the case, price appreciation could be market 
manipulation. One depreciation of market price must be consequence of volume since 
offer pressure is present. As in the demand case, if this is not the case, price 
depreciation could be market manipulation. 



 
In this environment, if some high relative price is hit and market price drops after that, 
this price is difficult to be passed. This higher price is known as a resistance, since it is 
possible that offers will be heavy placed in this price. 
 
In the same thinking scheme, if some lower relative price is hit and market price 
appreciate after that, this price is difficult to be passed down. This lower price is known 
as a support, since it is possible that buyers will be heavy placed at this price. 
 
As we mention before, technical traders are always  trying to predict future movements 
and to establish figures that may have some forecasting value in the future price 
movements.  
 
In this work it is not our ambition to explain some technical figures like head-and-
shoulders or diamonds. Our concentration here is focused in Elliot wave explanation. 
 
 
1.4.Trends, Moving Averages and Statistical Tests for Profitable Trend Strategies. 
 
As we mention before, technical analysts believe market follows trends. Primary, 
secondary and terciary trends, that represent different time spans are present in the stock 
market.  
 
If we believe that markets reflects economy, since economy follows cycles, markets 
must follow cycles as well. Technical analysis tries hard to measure cycles and change 
of the primary trends included. 
 
There are two ways of measuring trend behaviour: Trend Lines and Moving Averages. 
We will review very quickly this concepts. 
 
 
1.4.1.Trend Lines 
 
Trend lines may define the primary, secondary and terciary movements. The trend lines 
are build joining support  (in one uptrend line) or resistant (in one downtrend) levels 
between some time lags. If we joint support and resistant levels simultaneously we get 
chanel trends that are figures for identifying peak or bottom levels. 
 
In trend design we must know that for getting primary trends, we must get annual 
supports or resistant levels before we join points. In the secondary reaction as well, we 
may find neighbour resistant and support levels in periods away at least one month and 
no more than one year.  
 
This is one important consequence of primary and secondary trend definitions.  
 
For the technical analyst, if some trend line is broken, he believes that another 
movement will follow and he must change his attitude in the market. 
 
  
1.4.2. Moving Averages. 



 
Moving averages are popular technical analysis indicators of trend movement. Rising 
moving averages indicates market strength and a decline denotes weakness. Since 
moving averages indicate trend some popular moving averages are used to try to specify 
Dow Theory. 50 day moving average are used to express secondary trend and 200 day 
moving average are used to get primary trend. Technical analysts usually observe the 
ascending and descending cross of 200 moving average by the 50 day moving average 
to express buy and sell signs, since they believe this crossings express one change in the 
course of primary trend. 
 
Ascending 50 day moving averages indicates secondary trend positive. If primary trend 
is ascending and this 200 moving average has one value less than the 50 moving 
average, we are technically speaking in one Bull Market. If  primary trend is descending 
and this 200 moving average has one value bigger than the 50 moving average, we are 
technically speaking in one Bear Market. 
 
Brock e al (1992) show in one important study that the 50-200 moving average strategy 
applied to Dow Jones Industrial Average between 1897 and 1986 produced significant 
signs, since sell signals are correlated with negative returns and buy signals with 
positive returns. Sell signals are linked to high volatility and buy signals with low 
volatility. Using several statistical models like ARMA and GARCH models, this autors 
specify the anomalous forecasting ability of this technical strategy compared with the 
models that cannot explain this fact. 
 
Brock e al (1992) refer explicitly (pp.1759). 
 
“ This paper shows that the return-generating process of stocks is probably more 
complicated than suggested by the previous studies using linear models. It is quite 
possible that technical rules pick up soe of the hidden patterns. We would like to 
emphasize that our analysis focuses on the simplest trading rules. Other more elaborate 
rules may generate even larger differences between conditional returns. Why suck rules 
might work is an intriguing issue left for further studies”. 
  
 
1.5.Elliot Waves and Fibonacci Series. 
 
1.5.1. History of Elliot Waves. 
 
Elliot Wave Principle came out in November 1978 by Robert Prechter. This theory 
begun many years before, when he met Elliot through correspondence. Prechter was 
publishing a national weekly stock market belletin to wich Elliot wished to join efforts. 
Letters back and forth followed but the matter was triggered in the first quarter of 1935. 
On that occasion the stock market, after receding from a 1933 high to a 1934 low, had 
started up again but during 1935´s first quarter the Dow Railroad Average broke to 
under its 1934 low point. Investors, economists, and stock market analysts had not 
recovered from the 1929-32 unpleasentness and this early 1935 breakdown was most 
disconcerting. 
 
On the last day of the rail list decline i received a telegram from Elliot stating most 
emphatically that the decline was over, that it was only the first setback in a bull market 



that had much further to go. This prediction proved correct and Prechter invited Elliot to 
ask him about how he made his prediction. Elliot accepted and went over his theory in 
detail. 
 
Subsequently, Prechter introduced Elliot to Financial World Magazine for whom Elliot, 
through a series of articles, covered the essencials of his theory therein. Latter Elliot 
incorporated The Wave Principle into a larger work entitled Nature´s Law. Therein he 
introduced the magic of Fibonacci and certain esoteric propositions that he believed 
confirmed his own views. 
 
 
1.5.2. Elliot Wave Principle. 
 
Introdution. 
 
The Wave Principle is a Elliott´s discovery that social, or crowd, behaviour trends and 
reverses in recognizable patterns. Analysing the stock market data behaviour, Elliot 
discovered that there is a structural design of stock market price behaviour that is 
common with basic harmony found in nature. 
 
Elliot isolated  thirteen patterns of movement or waves, that recur in market price data 
and are repetitive in form, but are not necessarily repetitive in time or amplitude. He 
named, defined and illustrated the patterns. He then described how these structures link 
together to form larger versions of those same patters, how they in turn link to form 
identical patterns of the next larger size, and so on.  This is very important discovery 
that was some decade after that explained mathematically by Mandelbrot(1982)when he 
introduced fractal geometry, one concept that we treat below.    
 
Elliott claimed predictive value for the Wave Principle, which now has the name 
“Elliott Wave Principle”. 
 
As Prechter and Frost (1996) refers (pp.19), “Althought it is the best forecasting tool in 
existence, the Wave Principle is not primarily a forecasting tool; it is a detailed 
description of how markets behave.”  
 
Basic Concepts. 
 
Under the Wave Principle, every market decision in produced to respond to information 
that arrives and this process generates meaningful information.  
 
Elliot notes that in markets, progress ultimately takes the form of five waves of a 
specific structure.Three of these waves, wich are labelled 1,3 and 5, actually effect the 
directional movement. They are separated by two countertrend interruptions, which are 
labelled 2 and 4. The two interruptions are apparently a requisite for overall directional 
movement to occur.   
 
There are two modes of wave development: impulsive and corrective. Impulsive waves 
have five wave structure and are the stronger movements, while corrective waves have a 
three wave structure or a variation thereof.  
 



In his 1978 book, The Wave Principle, Elliot pointed out that the stock market unfolded 
according to a basic rhythm or pattern of five waves up and three waves down to form a 
complete cycle of eight waves (supposing one ascendant wave movement). 
 
Zigzags 
 
A single zigzag in a bull market is a simple three-wave declining pattern labelled A-B-
C. The subwave sequence is 5-3-5 and the top of wave B is lower than the start of wave 
A. 
 
Historical and Mathematical Background of the Wave Principle 
 
The Fibonacci sequence of numbers was discovered by Leonardo Fibonacci, a 
mathematician of the the thirteenth century. When Elliot wrote Nature´s law, he referred 
specifically to the Fibonacci sequence as the mathematical basis for the Wave Principle.  
 
Born between 1170 and 1180, Leonardo Fibonacci, the son of a prominent merchant 
and city official, probably lived in one of Pisa´s many towers. 
Soon after Leonardo´s father was appointed a customs official at Bogia in North Africa, 
he instructed Leonardo to join him in order to complete his education. Leonardo began 
making many business trips around the Mediterranean. After one of his trips to Egypt, 
he published  his famous Liber Abacci (Book of Calculation) which introduced to 
Europe one of the greatest mathematical discoveries of all time, namely the decimal 
system, including the positioning of zero as first digit in the notation of the number 
scale. This system, which included the 0,1,2,3,4,5,6,7,8,9 became known as the Indu-
Arabic system, which is now universally used. 
 
The Fibonacci Sequence 
 
In Liber Abacci, a problem is posed that gives rise to the sequence of numbers 
1,1,2,3,5,8,13,21,34,55,89,144, and so on to infinity, known today as the Fibonacci 
sequence. The problem is this as Prechter  and frost (1996)  presents (pp.95): 
 
“How many pairs of rabbits placed in an enclosed area can be produced in a single year 
from one pair of rabbits if each pair gives birth to a new pair each month starting with 
the second month?”. 
 
We must restate that each pair, including first pair, needs a month´s time to mature. 
Once in production, begets a new pair each month. The number of pairs is the same at 
the beginning of each of the two months, so the initial sequence is 1,1. This first pair 
finally doubles its number during the second month, so that at the beginning of the 
fourth month the sequence expands to 1,1,2,3. Of these three, the two old pairs 
reproduce, but not the youngest pair, so the number of rabbit pairs expand to five. The 
Fibonacci sequence resulting from the rabbit problem has many interesting properties, 
namely: 

- Each number of the series can be generated by the sum of the two 
numbers before. 

- The ratio between two consecutive numbers tends to one fixed number 
(0,618034 or 1,618034). The ratio between any number interpolated 
numbers tend also to be one important number. 



 
As Prechter and Frost (1996) refers, Elliot waves are usually observed in the markets so 
his explanation power for certain dynamic movements is really impressive. Why such 
waves exist and with the Fibonacci mechanics is a fact that, to our knowledge, is not 
already explained. 
 
This fact may be one consequence of the view of academic researchers with concern to 
technical analysis, viewed more from one art view. Academics until recent present 
dismiss forecast power of technical instruments arguing that past reflects only 
information that arrived and that is reflected in stock prices. According to efficient 
market hypothesis, stock market prices follow one randow walk and his trajectory is 
unforecastable. In the last 40 years many studies refers that stock prices are linearly 
uncorrelated and trends must show correlation somewhere. Recent studies2, however, 
argue that moving averages and other indicators reflect nonlinear dependence, more 
complex relationships between today prices and past prices.  
 
This last documentation studies, as we refer before, are opening academic minds to 
explain certain technical regularities in the view of scientific work. 
   
Next we introduce one well known nonlinear equation that is applied in nonlinear 
chaotic motion explanation that we will use to prove that Elliot waves are one particular 
type of dynamic of nonlinear systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
2 For more information about that please read : 
Soares, Vasco Jorge Salazar (1997). A (in)Eficiência Dos Mercados Bolsistas de Acções. Ed. Vida 
Económica,Porto. 



 
2.NONLINEAR DYNAMICS AND APPLICATIONS TO 
CAPITAL MARKETS. 
 
 
Since the work of Peters(1991), nonlinear chaotic theory has attracted many academics 
to the power of this theory in the explanation of stock market dynamics. In the heart of 
the theory is the logistic equation study of Feigenbaum(1983), that describes the kind of 
dynamics that nonlinear chaotic systems equations can apply. So, we will review with 
the study of this particular equation. 
 
 
2.1.Logistic Equation. 
 
The standard form of the so called "logistic" function is given by  
 
f(A) = An  (1 - An) 
 
Where R is called the growth rate when the equation is being used to model population 
growth in an animal species say .  
 
The logistic equation was popularised Feigenbaum (1983) as an example of a very 
simple nonlinear equation being able to produce very complex dynamics. We must state 
clearly that each present number depends of all past information and motion driver (R).  
 
When used to create a series  
 
An+1 = R An (1 - An)  
 
The logistic equation can present some kind of different behaviors: 

• Extinction (Uninteresting fixed point). 
If the growth rate R is less than 1 the system "dies", An -> 0. 

• Fixed Point 
The series tends to a single value. How it reaches this value is not important but 
generally it oscillates about the fixed point but unlike a mass spring system, the 
series generally tends to rapidly approach fixed points. In the bifurcation 
diagram below the system can be seen to tend to fixed points for 1 < R < 3.  

• Periodic 
The series jumps between two or more discrete states. In the bifurcation diagram 
below it can be seen that the system alternates between 2 states after R = 3. After 
about 3.44948 (1 + sqrt(6)) the system alternates between 4 states. Notice the 
system jumps between these states, it does not pass through intermediary values. 
The number of states steadily increases in a process called period doubling as R 
increases. For example at 3.5441 until 3.5644 there are 8 states. Between 3.5644 
and 3.5688 there are 16 states.  

• Chaotic 
In this state the system can evaluate to any position at all with no apparent order. 
In the bifurcation diagram below, the system undergoes increasingly frequent 
period doubling until it enters the chaotic regime at about 3.56994. Below R = 4 



the states are bound between (0,1), above 4 the system can evaluate to 
(0,infinity).  
Amoungst this chaos a 3 period surprisingly appears between about 3.8284 (1 + 
sqrt(8)) < R < 3.8415.  

 
2.2.Space Phase Diagrams and Behavior of Logistic Equations Under Motion 
Control. 

 
This series behaves in one of the following ways depending on the value of the motion 
driver “R”, the initial conditions don't matter (within reason). 
 
A particularly interesting, and popular iterated map is the logistic map. This map shows 
many of the features that we will see appearing later on in continuous systems. The 
logistic equation is actually a simple model for species population with no predators, 
but limited food supply. It is given, as we have seen before, by the following equation:  
 
An+1 = R An  ( 1-  An ) 
 
where “R” is a parameter to be set anywhere from 0 to 4. The initial “An” must be from 
the region 0 to 1. 
  
To start, we will be setting “R” to 2.9. To see what happens, we plot a time series plot 
of the orbit. As the function is iterated it approaches a stable point. This is similar to the 
excercise performed earlier. There is actually an unstable fixed point at 0, try plugging 
zero into the equation for x and see what you get. This point is unstable because if the 
initial conditions do not start exactly on zero, then they will go to the stable point. The 
origin is called a repeller, while the stable point is an attractor. In the population 
example, the origin corresponds to a zero population. Life does not spring from nothing. 
The parameter “R” is the amount of food supply. For this amount of food supply the 
population grows to a point, then settles down to a steady state. 
 
 

Figure 1 – Logistic Behavior under  “R=2,90”. 

 

If we increase “R” for 3.0 then something more interesting happens. The orbit does not 
settle down to a fixed point. The fixed points that were there before have lost stability, 
now the system will cycle between two points. This is called a stable cycle, in this case, 
a stable 2-cycle. In our population, the food has been increased. Now a small generation 
has so much food that it makes a rapid growth spurt, however, in the next generation, 
there are too many in our population and not enough food, so the population dies off a 



bit. This is actually stable behavior, and is seen in some economic series and in some 
stock market prices in  specific periods.  
 
 

Figure 2 – Logistic Behavior under  “R=3,00”. 
 

 

If we keep increasing “R”, this two cycle becomes a four cycle, then an 8 cycle and so 
on. Before we examine this, lets first take a look at a nice way of seeing this visually.  
What we are doing here is taking a point A1, evaluating A2 = f(A1), then A3 = f(A2), 
and so on. If we plot (A1,A2), this is a point on the logistic curve. Drawing a horizontal 
line to (x2,x2) gives a point on the diagonal line. To get back onto the logistic curve we 
draw a line to (A2,A3), then back to the diagonal line at (A3,A3). 
 
 This probably seems like a strange way to see the logistic orbit, but if you experiment 
with it, you can see stable fixed points, stable cycles and anything else this equation 
may hide very easily. Experiment with R=2.9, and R=3.2. You will see the fixed point 
and the two cycle that were covered earlier.   
 
Now that we have cobwebs under our belt, we can increase “R” further. If you didn't try 
increasing “R” for 3.2, try it now, try “R=3.5” then “R=5.65”. You will see that the 
cycle has changed to a 4-cycle then an 8-cycle. These changes are called bifurcations. 
At a bifurcation the system undergoes a massive change in long term behavior. As “R” 
is increased, the bifurcations come faster and faster, until finally at about 3.5699 the 
cycle length becomes infinite. If ”r” is further increased from 3.5699 up (but still below 
4.0) then the system no longer has a cycle, it bounces about forever, but never repeats 
itself.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3 – “At” Versus “At-1” Under  “R=3,90”. 

 

 

This behavior is chaos. There is another way to easier see these bifurcations. If the 
stable points, or stable cycles are plotted as a function of “r”, then each of the cycles can 
be seen bifurcating into a cycle twice as long. After r is increased past 3.5699, chaos 
appears, but there are windows of periodic behavior intersperced with the chaos.  

 
 

Figure 4 – Steady State Values Under Variation of “R”. 
 

 
 
 



Looking at this diagram we can see that there are windows of similar behaviour when 
we magnify the regions inside.   
 
The work of Feigenbaum (1980) shows that each bifurcation occurs in a mathematical 
sequence, one limit number that receive his name, the Feigenbaum´s constant. 
 
To explain this, consider the parameter values where period-double events occur (ex: 
r(1)=3, r(2)=3.45, r(3)=3.54, r(4)=3.564. If we compute the ratio of distances between 
consecutive doubling parameter values: 
 
D= ( r(n+1)-r(n) ) / ( r(n+2) – r(n+1) )  
 
We can observe that this ratio tends, when “n” goes to infinity, to a constant value of 
4,669201609102990671853 
 
The interpretation of this delta constant is as you approach chaos, each periodic region 
is smaller than the previous by a factor approaching 4,669.… Feigenbaum´s constant is 
important because it is the same for any function or system that follows the periodic 
doubling to chaos as has one-hump quadratic maximum. 
 
 
2.3. Statistical Properties of State Phase Maps. 
 
As we see before, logistic equation is one nonlinear system where every present number 
depends on all past values precisely determined by the motion of the system and the 
motion driver (r). The behaviour of the system depends, as we have seen, on the motion 
parameter. Depending on motion parameter the system can evolve under fixed point 
attraction, periodic limit cycle, aperiodic limit cycle and chaos. The route to this 
behaviour is well described in the logistic equation by the feigenbaum´s constant. 
 
In nonlinear teory, this kind of behaviour can be observed representing the dynamics of 
the system in on state phase map where we can represent the series against the time lag 
series (where we can define dimension and time lag dimension coordinates of the map). 
 
In chaotic systems we observe some regularities in the maps, namely repetitions of 
designs between bigger regions and smaller ones inside them. This property is important 
and is known as self-similarity of this strange attractors. This self-similarity builds in 
the consequence of the repetition of some constant process that generates some 
structure. This similarity adjusted under scale, where the small is identitical to the 
bigger map represents one important characteristic of non-linear chaotic systems 
designed by fractal geometry. When we look to the all it is the same as we look to small 
parts.  
 
Below we join some general graphics representing examples of this behaviour in 
mathematical systems. 
 
Look, for example, for this examples: 
 
    



One of the basic properties of fractal images is the notion of self-similarity. This idea is 
easy to explain using the Sierpinski triangle. Note that S may be decomposed into 3 
congruent figures, each of which is exactly 1/2 the size of S! See Figure 7. That is to 
say, if we magnify any of the 3 pieces of S shown in Figure 7 by a factor of 2, we obtain 
an exact replica of S. That is, S consists of 3 self-similar copies of itself, each with 
magnification factor 2.  
 
 
 

Figure 5 – Magnifying the Sierpinski triangle 
 

 
 
 
 

We can look deeper into S and see further copies of S. For the Sierpinski triangle also 
consists of 9 self-similar copies of itself, each with magnification factor 4. Or we can 
chop S into 27 self-similar pieces, each with magnification factor 8. In general, we may 
divide S into 3^n self-similar pieces, each of which is congruent, and each of which may 
be maginified by a factor of 2^n to yield the entire figure. This type of self-similarity at 
all scales is a hallmark of the images known as fractals 
 
 
2.4.Chaos Game, Strange Attractors and Fractal Properties. 
 
Students (and teachers) are often fascinated by the fact that certain geometric images 
have fractional dimension. The Sierpinski triangle provides an easy way to explain why 
this must be so.  
 
To explain the concept of fractal dimension, it is necessary to understand what we mean 
by dimension in the first place. Obviously, a line has dimension 1, a plane dimension 2, 
and a cube dimension 3. But why is this? It is interesting to see students struggle to 
enunciate why these facts are true. And then: What is the dimension of the Sierpinski 
triangle?  
 
They often say that a line has dimension 1 because there is only 1 way to move on a 
line. Similarly, the plane has dimension 2 because there are 2 directions in which to 
move. Of course, there really are 2 directions in a line -- backward and forward -- and 
infinitely many in the plane. What the students really are trying to say is there are 2 



linearly independent directions in the plane. Of course, they are right. But the notion of 
linear independence is quite sophisticated and difficult to articulate. Students often say 
that the plane is two-dimensional because it has ``two dimensions,'' meaning length and 
width. Similarly, a cube is three-dimensional because it has ``three dimensions,'' length, 
width, and height. Again, this is a valid notion, though not expressed in particularly 
rigorous mathematical language.  
 
Another pitfall occurs when trying to determine the dimension of a curve in the plane or 
in three-dimensional space. An interesting debate occurs when a teacher suggests that 
these curves are actually one-dimensional. But they have 2 or 3 dimensions, the students 
object.  
 
So why is a line one-dimensional and the plane two-dimensional? Note that both of 
these objects are self-similar. We may break a line segment into 4 self-similar intervals, 
each with the same length, and ecah of which can be magnified by a factor of 4 to yield 
the original segment. We can also break a line segment into 7 self-similar pieces, each 
with magnification factor 7, or 20 self-similar pieces with magnification factor 20. In 
general, we can break a line segment into N self-similar pieces, each with magnification 
factor N.  
 
A square is different. We can decompose a square into 4 self-similar sub-squares, and 
the magnification factor here is 2. Alternatively, we can break the square into 9 self-
similar pieces with magnification factor 3, or 25 self-similar pieces with magnification 
factor 5. Clearly, the square may be broken into N^2 self-similar copies of itself, each 
of which must be magnified by a factor of N to yield the original figure. See Figure 8. 
Finally, we can decompose a cube into N^3 self-similar pieces, each of which has 
magnification factor N.  
 
 

Figure 6 – Square and Self-Similar Pieces With Magnification Factor N 
 

 
 
Now we see an alternative way to specify the dimension of a self-similar object: The 
dimension is simply the exponent of the number of self-similar pieces with 
magnification factor N into which the figure may be broken.  
So what is the dimension of the Sierpinski triangle? How do we find the exponent in 
this case? For this, we need logarithms. Note that, for the square, we have N^2 self-
similar pieces, each with magnification factor N. So we can write  
 
 



 
 
Similarly, the dimension of a cube is  
 

 
 
Thus, we take as the definition of the fractal dimension of a self-similar object  
 
 

 
 
Now we can compute the dimension of S. For the Sierpinski triangle consists of 3 self-
similar pieces, each with magnification factor 2. So the fractal dimension is  
 

 

 
 
so the dimension of S is somewhere between 1 and 2, just as our ``eye'' is telling us.  
But wait a moment, S also consists of 9 self-similar pieces with magnification factor 4. 
No problem -- we have  
 

 
 
as before. Similarly, S breaks into 3^N self-similar pieces with magnification factors  
2^N, so we again have  



 

 
 
Fractal dimension is a measure of how "complicated" a self-similar figure is. In a rough 
sense, it measures "how many points" lie in a given set. A plane is "larger" than a line, 
while S sits somewhere in between these two sets.  
On the other hand, all three of these sets have the same number of points in the sense 
that each set is uncountable. Somehow, though, fractal dimension captures the notion of 
"how large a set is" quite nicely, as we will see below.  
 
 
2.5. The Chaos Game 
 
One of the most interesting fractals arises from what Barnsley(1988) has dubbed ``The 
Chaos Game''. The chaos game is played as follows. First pick three points at the 
vertices of a triangle (any triangle works---right, equilateral, isosceles, whatever). Color 
one of the vertices red, the second blue, and the third green.  
Next, take a die and color two of the faces red, two blue, and two green. Now start with 
any point in the triangle. This point is the seed for the game. (Actually, the seed can be 
anywhere in the plane, even miles away from the triangle.) Then roll the die. Depending 
on what color comes up, move the seed half the distance to the appropriately colored 
vertex. That is, if red comes up, move the point half the distance to the red vertex. Now 
erase the original point and begin again, using the result of the previous roll as the seed 
for the next. That is, roll the die again and move the new point half the distance to the 
appropriately colored vertex, and then erase the starting point. See Figure 7. 
 
 

 Figure7 – Playing the Chaos Game With Rolls of Red, Green, Blue, Blue. 
 

 
  

 
Now continue in this fashion for a small number of rolls of the die. Five rolls are 
sufficient if you are playing the game ``by hand'' or on a graphing calculator, and eight 
are sufficient if you are playing on a high-resolution computer screen. (If you start with 
a point outside the triangle, you will need more of these initial rolls.)  



After a few initial rolls of the die, begin to record the track of these traveling points after 
each roll of the die. The goal of the chaos game is to roll the die many hundreds of 
times and predict what the resulting pattern of points will be. Most students who are 
unfamiliar with the game guess that the resulting image will be a random smear of 
points. Others predict that the points will eventually fill the entire triangle. Both guesses 
are quite natural, given the random nature of the chaos game. But both guesses are 
completely wrong. The resulting image is anything but a random smear; with 
probability one, the points form what mathematicians call the Sierpinski triangle and 
denote by S (see Figure 8). 
 
 
 

 Figure 8 – The Sierpinski Triangle. 
 
 

 
 
  

 
A few words about the coloring here is in order. We have used color merely to indicate 
the proximity of the vertex with the given color. For example, the portion of the triangle 
closest to the green vertex is colored green, and so forth.  
There is some terminology associated with the chaos game that is important. The 
sequence of points generated by the chaos game is called the orbit of the seed. The 
process of repeating the rolls of the die and tracing the resulting orbit is called iteration. 
Iteration is important in many areas of mathematics. In fact, the branch of mathematics 
known as discrete dynamical systems theory is the study of such iterative processes.  
There are two remarkable facets of the chaos game. The first is the geometric intricacy 
of the resulting figure. The Sierpinski triangle is one of the most basic types of 
geometric images known as fractals. The second is the fact that this figure results no 
matter what seed is used to begin the game: With probability one, the orbit of any seed 
eventually fills out S. The words ``with probability one'' are important here. Obviously, 
if we always roll ``red,'' the orbit will simply tend directly to the red vertex. Of course, 
we do not expect a fair die to yield the same two numbers at each roll.  
 
 
 



 
2.6. Fractals and Chaos and Statistical Consequences. 
 
As we have seen, nonlinear equations can produce fractal sets, in particular, due to the 
repetitive strech and fold iterations. It is interesting to see that equilibrium, cycles, 
nonperiodic behaviour, transients or near random events and chaos can be consequence 
of the same dynamic under different motion control behaviour. As Vaga (1991) points, 
stock market behaviour has all situations described above in different time. This is 
perhaps the explanation why so many years technical analysis has grown at the same 
time new quantitative tools based in one unforecastable market rooled by efficient 
markets grow importance and his autors like Markowitz, Sharpe, Lintner, Mossin and 
others shine in the Nobel committee.  
 
This theory of Vaga(1991) may explain why technical analysis is used even when 
sometimes is spurious. We never know what kind of dynamic we can observe in stock 
market. 
 
And what can we observe from one statistical perspective? If, stock market follows the 
same process in all time scales we may infer that statistical properties will be the same 
under time scale transformation. The Levy distribution is one important statistical 
distribution that follows this idea. Fama(1965) in the stock market and  
Mandelbrot(1963) in the cotton price returns argue in the 60´s of the last century that 
returns seems to follow this kind of distribution. Pareto distribution has one indesirable 
propertie : variance and moments superior of two will be undefined in this kind of 
distribution. The closed form of density distribution is also unknown or not defined and 
this is not interesting in the modelling process.  
  
 
2.7.Chaos Theory and Forecasting in Short and Long Term. 
 
One of the curious conclusions of chaos theory is that, if stock market follows one 
chaotic behaviour, stock market forecasting is impossible in long term, since initial 
small errors will be amplied in the nonlinear process. 
 
In the short term there is some small forecasting power and some technique are well 
known, as is the nearest neighbourhood estimate in the space of phase of the trajectory 
of the system in the atractor, or estimation of the equations of motion and forecast. 
 
 
2.8.Persistence and Disaster in Nonlinear Systems.  
 
One interesting propertie of nonlinear systems is the long term dependence of this 
processes. This is logical since every observation depends on his history  and the motion 
parameter control. 
 
In the last years, several statistical tools in the traditional econometric analysis have 
been introduced to model this persistence in processes. ARFIMA in the ARMA 
processes, IGARCH in the GARCH processes are examples of the temptation of 
modelling stock returns. A good review is made in Maldelbrot (1997) where he claim 
the superiority of the fractal modelling he develop for modelling stock returns. He 



clearly defend multifractal models for resolving some critics his work of the 60´s has 
been targeted. 
 
As Mandelbrot and Wallis (1968) stated, in nonlinear dynamics we have not only 
persistence (they recall  the joseph effect in the bible) but disaster events ( the noah 
effect of the bible). Even we have a lot of data we could never predict this large changes 
in environment. In the stock market we may observe this effect. As a matter of fact, if 
someone observe stock market prices in the north-american market from 1930 to 1986 
they never assume that one crash may occur as it did in 1987, after the 1929 crash. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
3.TECHNICAL ANALYSIS AND NONLINEAR 
DYNAMICS: ELLIOT WAVE PREVIEW EVIDENCE. 
 
 
3.1.Long Term Correlation and Trends. 
 
As we mention before, one the consequences of nonlinear modelling is long term 
dependence or correlation. As we know, Dow Theory described above clearly defends 
that stock market follow trends, that is, there is some persistent behaviour in the stock 
markets and as consequence, some forecasting power can be made projecting the trend 
behaviour.  
 
As we mention before, some studies show that moving averages can produce superior 
forecast signals not explained for quantitative modern modelling techniques. 
 
As Brock e all. (1992) mention, there are some possibilities that moving averages can 
capture nonlinear behaviour complexity relationship that linear or existing nonlinear 
models fails to get. If this is true, the success of this kind of technical analysis can 
perfectly be explained.   
 
 
2.Equilibrium, Trends, reversals and Nonlinear Dynamics. 
 
When we observe stock market price dynamics (past information) it seems clear to us 
that sometimes there are cyclical movements, equilibrium tendency, random behaviour, 
trends and sometimes astonishing movements (as crashes or so).  
 
As Maheu and Mccurdy (2004) points, news flow can influence stock market volatility. 
Normal or expected  news do not interfere in stock market volatility and unusual news 
innovations can introduce some shocks of different magnitudes in the stock market 
volatility. These jumps in volatility can be sometime be find some dependence 
considered chaotic, although stock returns do not indicate this kind of behaviour.  
 
This last recent results are very interesting since it is possible that the change in the 
motion driver will be the the main reason, as Vaga (1991) points, for the ausence of 
chaotic behaviour in the stock market returns. 
 
Chaotic motion in the volatility may be explained by the serious impact of news 
unexpected that can arrive at any moment to the markets. It is possible and perfectly 
understandable that since one important notice that can affect future stock returns 
arrives to the market he can alter the past behaviour that the market is experiencing. 
 
However, as some researchers notice, it is possible that news and market returns are 
someway correlated in one complex way so that indeed only one very small of news are 
outliers of the system. If this idea is correct, we can expect that stock market behaviour 
will reflect some kind of regularity or stability under short, medium and long term. 
 
This kind of idea may well explain why looking for one minute, month or year stock 
market graph they seem to have the same dynamic. The process is the same but repeated 



and adjusted to different time scales as proposed by Mandelbrot(1997) in his famous 
multifractal model.      
 
 
3.3.Nonlinear Dynamics and Elliot Waves: Strech and Fold process. 
 
Introdution 
 
When we look for some stock market graphs we clearly can identify Elliot Waves, 
sometimes following exactly the Fibonacci ratios 0,618 and 1,618. As is well known, 
stock market indices clearly are the preferred way of doing this kind of analysis. 
 
When we look for the whole graphs, sometimes we can see that inside some Elliot 
movements we can find another Elliot movements and, if we look inside this small 
Elliot movements, we can see smallest ones inside. This fractal properties are 
consequence of nonlinear dynamics of the markets, and that makes us believe that if we 
look inside some basic nonlinear dynamic equation, we could explain Elliot waves and 
the Fibonacci ratios. 
 
Our work looks only to explanation of Elliot movements in the perspective of 
understanding why they happen and in what kind of nonlinear behaviour.    
 
Elliot Waves, Fibonacci Ratios and Logistic Equation 
 
We start looking at the nonlinear logistic equation: 
 
At+1= R At (1 – At ) 
 
We look for the ratio of consecutive values of this serie when we define one initial 
number and motion control (R). 
 
We then look for some explanation for the 0,618034 and 1,618034 numbers in the small 
and longest wave. We look for each number of the serie generated  by the logistic 
equation and calculate At+1/At and At+2/At+1 and so on until large number (say 
A1000/A999). 
  
For simulation we give one initial number that is a way that did not determine the 
following dynamic. We then look for the motion control variation and, by the way, we 
find that when we assort for “R” the number 3.236068 we get for the ratios exactly the 
Fibonacci numbers 0,618034 and 1,618034. 
 
As we point in 2.1. for 3 <R<3.56994 the system generated by the logistic equation is 
defined as periodic. Before a gets the value 3,44948 (as is the case when we get the 
Fibonacci ratios) the system alternates between 2 states. As we jump the “a” parameter 
motion control we get more periodic behaviour but of superior complexity. As we 
mention before between 3.5644 and 3.5688 there are 16 states. The system undergoes 
increasingly frequent period doubling until it enters the chaotic regime at about 
3.56994. For “R” <3 we will find tendency to a single value or equilibrium. 
As we find that the Fibonacci ratios can be found of consequence of one “R” equal to 
3,236068 and if we model price movements as successive ascendant and descendant 



movements reflecting ratios of the nonlinear series, we can reproduce very easily the 
kind of Elliot waves.We could oberve this kind of behavior in the stock markets since 
they are the result of one of the simplest nonlinear beahavior where we have a periodic 
function of two states.  
 
 
3.4. Elliot Waves as One Equilibrium Dynamic Process. 
 
Periodic behaviour presented in the waves with the Fibonacci ratios reflects that the 
process is looking always between two states of equilibrium. In this process, the trend 
depends of the initial direction of the process since it determines posterior movements. 
If the initial movement is one drop then the periodic behaviour will get posterior worse 
conditions.  
 
If the initial movement is one rise then the periodic behaviour will get posterior better 
conditions. That is, the rise in revisions of price will be better than the dropping target 
values and the stock price will appreciate.  
 
When we look for the Elliot movement we can not explain why he asserts five waves 
and a posterior A/B/C. As a matter of fact this may be one behaviour that we here can 
not explain. We conjecture that the flow of information can be responsible for the 
change in the dynamic behaviour of the system. If no information arrives this Elliot 
Waves could last for longer movements (as we observe sometimes in stock markets). 
 
We would find that after one periodic movement we could stay for some time looking  
for one equilibirium value and this represents that the motion control “R” will fall 
bellow the value 3. If so, the waves ascendant and descendant will be of near the same 
amplitude and wew will get what technician analysts call “lateral tendency”. 
 
In the next section we will exemplify our model of price behaviour dynamics with some 
cases of nonlinear dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. PRATICAL EXAMPLES OF ELLIOT WAVES AND 
NONLINEAR DYNAMICS. 
 
In this part we simulate “motion driver R” taking some values 
(3,23068;3,44948;3,56944;4,00) and we build different ratio dynamics in the logistic 
equation. Then we apply “strech and fold” methodology (considering At/At-1 from 
logistic equation) to build the “artificial time series” upon one starting amplitude 
movement  considered (A2-A1). We state A1 to be the initial price and A2 the second 
price that determines initial movement necessary for the construction of the serie    
 
Let us see the simulated cases for understanding “artificial time series” properties: 
 
 
* The case of  R= 3.236068 
 

Table 1 – Logistic Equation and Stock Market Simulation Dynamic under “R= 
3,236068”. 

Observation 
At 

Logistic 
Equation 

“R” and 
At+1/At 

Stock 
Price Variation

Next 
Movement

Fibonacci 
Serie 

Expansion 
Ratio 

Retracement 
Racio 

2 0.1 3.236068 4.00  0   
3 0.29124612   4.40 0.40 0.92 1   
4 0.667995038 2.293576 3.48 -0.92 0.99 1 1 
5 0.717687612 1.074391 4.47 0.99 0.90 2 2 0.5
6 0.655666545 0.913582 3.57 -0.90 1.00 3 1.5 0.666667
7 0.730600363 1.114286 4.57 1.00 0.87 5 1.666667 0.6
8 0.636934142 0.871796 3.70 -0.87 1.03 8 1.6 0.625
9 0.748337621 1.174906 4.72 1.03 0.84 13 1.625 0.615385

10 0.609443593 0.814397 3.89 -0.84 1.06 21 1.615385 0.619048
11 0.770255701 1.263867 4.95 1.06 0.79 34 1.619048 0.617647
12 0.572660599 0.743468 4.16 -0.79 1.09 55 1.617647 0.618182
13 0.791931976 1.382899 5.25 1.09 0.73 89 1.618182 0.617978
14 0.533225439 0.673322 4.51 -0.73 1.11 144 1.617978 0.618056
15 0.805444608 1.510514 5.62 1.11 0.70 233 1.618056 0.618026
16 0.507103477 0.629594 4.92 -0.70 1.11 377 1.618026 0.618037
17 0.80885371 1.595047 6.03 1.11 0.69 610 1.618037 0.618033
18 0.500326486 0.618562 5.35 -0.69 1.11 987 1.618033 0.618034
19 0.809016655 1.616977 6.46 1.11 0.69 1597 1.618034 0.618034
20 0.500000682 0.618035 5.77 -0.69 1.11 2584 1.618034 0.618034
21 0.809017 1.618032 6.88 1.11 0.69 4181 1.618034 0.618034
22 0.499999992 0.618034 6.20 -0.69 1.11 6765 1.618034 0.618034
23 0.809017 1.618034 7.31 1.11 0.69 10946 1.618034 0.618034

 
As we can see in the table above, staring with stock price at 4 and supposing that the 
first movement is up, then the stock price rises in waves remembering the Elliot Wave 
with exactly the Fibonacci ratios. We suppose strech and fold according to the ratio of 
the logistic equation. 
 
The periodic 2 of the cycle behaviour of the system can bee seem in the logistic values. 
 



The graphs of logistic values, ratios between At/At-1 and At+1/At and the simulated  
stock market performance of the nonlinear dynamic series for this case  can be seen 
below: 
 
 
 Figure 9 – Logistic Values Under Simulation of “R=3,236068” and Initial A1=0,1. 
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Figure 10 – Ratios of At/At-1 Under Simulation of “R=3,236068” and Initial 
A1=0,1. 
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Figure 11 – Simulated Stock Price Performance Under Initial Price equal to 4 
euros , “R=3,236068” and Initial A1=0,1. 
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* The case of  R= 2.25 
 
 

Table 2 – Logistic Equation and Stock Market Simulation Dynamic under “R= 
2,25”. 

Observation 
At Logistic    Equation 

“R” and 
At+1/At 

Stock     
Price Variation 

Next 
Movement 

2 0.1 2.25 4.00  
3 0.2025   4.40 0.40 0.72
4 0.363360938 1.794375 3.68 -0.72 1.03
5 0.520491975 1.432438 4.71 1.03 1.11
6 0.561555178 1.078893 3.60 -1.11 1.09
7 0.55397466 0.986501 4.70 1.09 1.10
8 0.555945156 1.003557 3.60 -1.10 1.10
9 0.555457814 0.999123 4.69 1.10 1.10

10 0.555579969 1.00022 3.60 -1.10 1.10
11 0.555549451 0.999945 4.69 1.10 1.10
12 0.555557082 1.000014 3.60 -1.10 1.10
13 0.555555174 0.999997 4.69 1.10 1.10
14 0.555555651 1.000001 3.60 -1.10 1.10
15 0.555555532 1 4.69 1.10 1.10
16 0.555555562 1 3.60 -1.10 1.10
17 0.555555554 1 4.69 1.10 1.10
18 0.555555556 1 3.60 -1.10 1.10
19 0.555555555 1 4.69 1.10 1.10

 
As we can see in the table above, staring with stock price at 4 and supposing that the 
first movement is up, then the stock price tends to fluctuate between 3.60 and 4.69. This 
kind of behaviour, technically known as lateral trend is indeed consequence of the 



equilibrium tendency of the system. As we assume that the market always strech the 
lateral trend is a logical consequence, since bad news are comensed by good news and 
the market oscilates. 
 
The equilibrium  behavior of the system can bee seem in the Logistic Values. We 
remember that when “a” is less than 3 the system tends to one equilibrium.  
 
The graphs of logistic values, ratios between At/At-1 and At+1/At and the simulated  
stock market performance of the nonlinear dynamic series for this case  can be seen 
below: 
 
 

Figure 12 – Logistic Values Under Simulation of “R=2,25” and Initial A1=0,1. 
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Figure 13 – Ratios of At/At-1 Under Simulation of “R=2,25” and Initial A1=0,1. 
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Figure 14 – Simulated Stock Price Performance Under Initial Price equal to 4 
euros , “R=2,25” and Initial A1=0,1. 
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* The case of  R= 3.44948 
 
 

Table 3 – Logistic Equation and Stock Market Simulation Dynamic under “R= 
3,44948”. 

Observation 
At 

Logistic    
Equation 

“R” and 
At+1/At 

Stock    
Price Variation 

Next 
Movement 

2 0.1 3.44948 6.00  
3 0.3104532  6.20 0.20 0.48
4 0.738437119 2.378578 5.72 -0.48 0.43
5 0.666259267 0.902256 6.15 0.43 0.49
6 0.767018978 1.151232 5.66 -0.49 0.40
7 0.616425062 0.803663 6.06 0.40 0.53
8 0.815613006 1.323134 5.53 -0.53 0.33
9 0.518761883 0.636039 5.87 0.33 0.55

10 0.861155755 1.660021 5.31 -0.55 0.27
11 0.412442323 0.47894 5.58 0.27 0.54
12 0.83592509 2.026768 5.04 -0.54 0.30
13 0.473111132 0.565973 5.34 0.30 0.55
14 0.859875987 1.817493 4.79 -0.55 0.27
15 0.41562534 0.483355 5.06 0.27 0.54
16 0.837812865 2.015789 4.52 -0.54 0.30
17 0.468723857 0.559461 4.82 0.30 0.55
18 0.858995729 1.832626 4.27 -0.55 0.27
19 0.417808147 0.486391 4.53 0.27 0.54
20 0.839067036 2.008259 3.99 -0.54 0.30
21 0.465795514 0.555135 4.29 0.30 0.55
22 0.858334292 1.842728 3.74 -0.55 0.27
23 0.419444817 0.488673 4.01 0.27 0.54

 
As we can see in the table above, staring with stock price at 6 and supposing that the 
first movement is up, then the increase in the motion parameter led the system to a more 
volatile behaviour. Interestingly, the consequences are negative for stock price 
behaviour and as a consequence the average return is negative. The wave movement 
takes the price down. 
 
It is interesting to note that since increasing motion paramenter “R” takes the system to 
more oscilation or volatility, we can observe that in this model this increase is negative 
for stock returns. This result is consistent with empirical results of Nelson that states 
that increase in volatility is associated with negative returns. This result asserts one 
assimetrical GARCH model to stock returns, the well known EGARCH model. 
 
When we increase parameter “a” we get more periodic behaviour of superior states until 
we get aperiodic and chaotic behaviour. 
 
The graphs of logistic values, ratios between At/At-1 and At+1/At and the simulated  
stock market performance of the nonlinear dynamic series for this case  can be seen 
below: 
 
 
 



 
Figure 15 – Logistic Values Under Simulation of “R=3,44948” and Initial A1=0,1. 
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Figure 16 – Ratios of At/At-1 Under Simulation of “R=3,44948” and Initial A1=0,1. 
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Figure 17 – Simulated Stock Price Performance Under Initial Price equal to 6 
euros , “R=3,44948” and Initial A1=0,1. 
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* The chaotic case of  a= 3.56944 
 

Table 4 – Logistic Equation and Stock Market Simulation Dynamic under “R= 
3,56944”. 

Observation 
At Logistic    Equation 

“R” and 
At+1/At 

Stock    
Price Variation 

Next 
Movement 

2 0.1 3.56994 6.00  
3 0.3212946  6.20 0.20 0.48 
4 0.778476753 2.422938 5.72 -0.48 0.38 
5 0.615638645 0.790825 6.10 0.38 0.53 
6 0.844746705 1.372147 5.57 -0.53 0.29 
7 0.468196595 0.554245 5.86 0.29 0.55 
8 0.888874161 1.898506 5.31 -0.55 0.22 
9 0.352627561 0.396713 5.53 0.22 0.51 

10 0.814950773 2.311081 5.02 -0.51 0.34 
11 0.53836841 0.660615 5.36 0.34 0.55 
12 0.887229567 1.647997 4.81 -0.55 0.22 
13 0.357184144 0.402584 5.03 0.22 0.51 
14 0.819671187 2.294814 4.52 -0.51 0.33 
15 0.527674016 0.643763 4.85 0.33 0.55 
16 0.889750957 1.686175 4.29 -0.55 0.22 
17 0.350190377 0.393582 4.51 0.22 0.51 
18 0.812365111 2.319781 4.01 -0.51 0.34 
19 0.544158947 0.669845 4.34 0.34 0.55 
20 0.885523572 1.627325 3.79 -0.55 0.23 
21 0.361890442 0.408674 4.02 0.23 0.51 
22 0.824391072 2.278013 3.50 -0.51 0.32 
23 0.516821757 0.626913 3.83 0.32 0.55 

 



As we can see in the table above, starting with stock price at 6 and supposing that the 
first movement is up, then the increase in the motion parameter led the system to a even  
more volatile behaviour in the parameter “a” gets the chaotic motion. Interestingly, the 
consequences are negative for stock price behaviour and as a consequence the average 
return is even more  negative. The wave movement takes the price down. The bigger the 
first movement of rising the bigger the falling movement of price. 
 
The graphs of logistic values, ratios between At/At-1 and At+1/At and the simulated  
stock market performance of the nonlinear dynamic series for this case  can be seen 
below: 
 
Figure 18 – Logistic Values Under Simulation of “R=3,56944” and Initial A1=0,1. 
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Figure 19 – Ratios of At/At-1 Under Simulation of “R=3,56944” and Initial A1=0,1. 
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Figure 20 – Simulated Stock Price Performance Under Initial Price equal to 6 

euros , “R=3,56944” and Initial Price Variation of 0,20. 
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In this simulation first price movement goes from 6 to 6,20 euros. After 19 iterations we 
can see that price is near 4 euros. 
 
 

Figure 21 – Simulated Stock Price Performance Under Initial Price equal to 6 
euros , “R=3,56944” and Initial Price Variation of 0,30. 
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In this simulation first price movement goes from 6 to 6,30 euros. After 19 iterations we 
can see that price is below 3 euros. 



Figure 22 – Simulated Stock Price Performance Under Initial Price equal to 6 
euros , “R=3,56944” and Initial Price Variation of 0,50. 
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In this simulation first price movement goes from 6 to 6,50 euros. After 19 iterations we 
can see that price is below 1 euro. This reflects empirical evidence that since we have 
one positive shock followed by posterior big changes in expectations with increasing 
volatility, then motion drive will change and negative behaviour will be stronger. 
 
 
 
* The chaotic case of  R= 4 
 
For ending our simulations we try to generate longer series of this simulated stock price 
when there is chaotic behaviour. To do so we start our simulations corresponding “R” 
driver motion to “4” and one initial movement of 6 to 6,01 euros. We then get the next 
64.000 observations. We reproduce the graph of the first 32000 observations and then 
the graph of the second 32.000 observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 23 – Simulated Stock Price Performance Under Initial Price equal to 6 

euros , “R=4,00” and Initial Price Variation of 0,01 (First 32.000 observations). 
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Figure 24 – Simulated Stock Price Performance Under Initial Price equal to 6 
euros , “R=4,00” and Initial Price Variation of 0,01 (Second 32.000 observations). 
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If we change the initial movement of 6 to 6,01 for 6 to 6,02  euros the behaviour comes 
more volatile as we expect. We reproduce the graph of the first 32.000 observations and 
then the graph of the second 32.000 observations. 
 



Figure 25 – Simulated Stock Price Performance Under Initial Price equal to 6 
euros , “R=4,00” and Initial Price Variation of 0,02 (First 32.000 observations). 
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Figure 26 – Simulated Stock Price Performance Under Initial Price equal to 6 
euros , “R=4,00” and Initial Price Variation of 0,02 (Second 32.000 observations). 
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Conclusion. 
 
Our work here focus on the possible explanation of technical analysis view in the 
environment of nonlinear dynamics. To do so, we explain very quickly the foundation 
terms of technical analyisis beguining with Dow Theory and going to the Elliot Waves. 
 
 
Then we look at the foundations of nonlinear theory and chaotic theory with the 
example of Feigenbaum (1983) work with the nonlinear logistic equation. 
 
 
Our research, looking for some transformations of logistic nonlinear equation shows us 
that, since we state that market movements are generated in  a strech and fold process, 
this equation can explain Fibonacci movements completely, showing that 0,618 and 
1,618 gold numbers are one simplest consequence of nonlinear dynamics. This 
discovery, to our knowledge, is revolutionary and can give new support to technical 
analysis movement explanation and prediction, joining fractal, chaotic and technical 
analysis in one theoretical point of view. 
 
 
However we are cautious about our discoveries and we state that much work remains to 
be done. But this will be one of our future and we expect others working research. 
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